Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We investigate the crumpling of an elastoplastic sheet as it is repeatedly crushed onto itself by rolling it into a cylinder and twisting it axially while allowing the end-to-end length to evolve freely. The sheet buckles and folds into structures that repeat but sharpen over hundreds of cycles to a remarkable degree before forming different configurations. Below a critical amplitude, reconfigurations decrease with applied cycles but continue to occur for large enough loading amplitude as the topology of the sheet changes as it tears. The sheet structure as measured by the mean curvature and the total crease length evolves logarithmically with cycle number with a rate that increases with compaction. We explain the progress of creasing using a flat folding model, and we show the logarithmic growth as being a consequence of individual creases becoming sharper with the number of folding cycles, leading to bifurcations in the folding pathway.more » « less
-
We show that unconstrained asymmetric dissolving solids floating in a fluid can move rectilinearly as a result of attached density currents which occur along their inclined surfaces. Solids in the form of boats composed of centimeter-scale sugar and salt slabs attached to a buoy are observed to move rapidly in water with speeds up to 5 mm/s determined by the inclination angle and orientation of the dissolving surfaces. While symmetric boats drift slowly, asymmetric boats are observed to accelerate rapidly along a line before reaching a terminal velocity when their drag matches the thrust generated by dissolution. By visualizing the flow around the body, we show that the boat velocity is always directed opposite to the horizontal component of the density current. We derive the thrust acting on the body from its measured kinematics and show that the propulsion mechanism is consistent with the unbalanced momentum generated by the attached density current. We obtain an analytical formula for the body speed depending on geometry and material properties and show that it captures the observed trends reasonably. Our analysis shows that the gravity current sets the scale of the body speed consistent with our observations, and we estimate that speeds can grow slowly as the cube root of the length of the inclined dissolving surface. The dynamics of dissolving solids demonstrated here applies equally well to solids undergoing phase change and may enhance the drift of melting icebergs, besides unraveling a primal strategy by which to achieve locomotion in active matter.more » « less
-
We investigate the escape dynamics of oligochaeta Lumbriculus variegatus by confining them to a quasi-2D circular chamber with a narrow exit passage. The worms move by performing undulatory and peristaltic strokes and use their head to actively probe their surroundings. We show that the worms follow the chamber boundary with occasional reversals in direction and with velocities determined by the orientation angle of the body with respect to the boundary. The average time needed to reach the passage decreases with its width before approaching a constant, consistent with a boundary-following search strategy. We model the search dynamics as a persistent random walk along the boundary and demonstrate that the head increasingly skips over the passage entrance for smaller passage widths due to body undulations. The simulations capture the observed exponential time-distributions taken to reach the exit and their mean as a function of width when starting from random locations. Even after the head penetrates the passage entrance, we find that the worm does not always escape because the head withdraws rhythmically back into the chamber over distances set by the dual stroke amplitudes. Our study highlights the importance of boundary following and body strokes in determining how active matter escapes from enclosed spaces.more » « less
-
We investigate the dynamics of a magnetoelastic robot with a dipolar magnetic head and a slender elastic body as it performs undulatory strokes and burrows through water-saturated granular beds. The robot is actuated by an oscillating magnetic field and moves forward when the stroke amplitude increases above a critical threshold. By visualizing the medium, we show that the undulating body fluidizes the bed, resulting in the appearance of a dynamic burrow, which rapidly closes in behind the moving robot as the medium loses energy. We investigate the applicability of Lighthill's elongated body theory of fish locomotion, and estimate the contribution of thrust generated by the undulating body and the drag incorporating the granular volume fraction-dependent effective viscosity of the medium. The projected speeds are found to be consistent with the measured speeds over a range of frequencies and amplitudes above the onset of forward motion. However, systematic deviations are found to grow with increasing driving, pointing to a need for further sophisticated modeling of the medium-structure interactions.more » « less
An official website of the United States government
